MCSR_logo.jpg (56K)
Home My MCSR Supercomputers Software Research Education
Login
GAMESS @ MCSR:

Introduction
Using GAMESS on Mimisa
Using GAMESS on Sweetgum

Further Information:
Additions/Revisions to GAMESS
Inputs to GAMESS
Sample Input Files
Installing GAMESS on Mimosa
Further Documentation




Parallel-O-Gram
News

MCSR Accounts
Contact Us

Sample input files for GAMESS

The distribution of GAMESS contains some short sample input files. They are all given below. The answers are shown in the comments preceeding each of the short input tests
    Example           Description
    -------           -----------
       1          CH2 RHF geometry optimization
       2          CH2 UHF + gradient
       3          CH2 ROHF + gradient
       4          CH2 GVB + gradient
       5          CH2 RHF + CI gradient
       6          CH2 MCSCF geometry optimization
       7          HPO RHF + gradient
       8          H2O RHF + MP2 gradient
       9          H2O MCSCF + MCQDPT energy correction
      10          H2O RHF + hessian
      11          HCN RHF IRC
      12         HCCH closed shell DFT geometry opt.
      13          H2O RHF properties
      14          H2O CI transition moment
      15          C2- GVB/ROHF on 2-pi-u state
      16           Si GVB/ROHF on 3-P state
      17          CH2 GVB/ROHF + hessian
      18           P2 RHF + hessian, effective core pot.
      19           NH spin-orbit coupling
      20           I- exponent TRUDGE optimization
      21          CH3 OS-TCSCF hessian
      22         H3CN UHF + UMP2 gradient
      23        SiH3- PM3 geometry optimization
      24          H2O SCRF test case
      25            ? internal coordinate example
      26         H3PO localized orbital test
      27          NH3 DRC example
      28      H2O-NH3 Morokuma decomposition
      29       FNH2OH surface scan
      30 HCONH2(H2O)3 effective fragment solvation
      31          H2O PCM test case
      32          HNO coupled cluster test
      33          HCN ORMAS-MCSCF illustration
      34         H2CO CIS optimization
      35           As relativity via Douglas-Kroll
      36         C2H4 MCSCF analytic hessian
      37       (H2O)3 Fragment Molecular Orbital RHF



! EXAM01.
!    1-A-1 CH2    RHF geometry optimization using GAMESS.
!
!    Although internal coordinates are used (COORD=ZMAT),
!    the optimization is done in Cartesian space (NZVAR=0).
!    This run uses a criterion (OPTTOL) on the gradient
!    which is tighter than is normally used.
!
!    This job tests the sp integral module, the RHF module,
!    and the geometry optimization module.
!
!    Using the default search METHOD=STANDARD,
!    FINAL E= -37.2322678015, 8 iters, RMS grad= .0264308
!    FINAL E= -37.2308175316, 7 iters, RMS grad= .0320881
!    FINAL E= -37.2375723414, 7 iters, RMS grad= .0056557
!    FINAL E= -37.2379944431, 6 iters, RMS grad= .0017901
!    FINAL E= -37.2380387832, 8 iters, RMS grad= .0003391
!    FINAL E= -37.2380397692, 6 iters, RMS grad= .0000030
!
 $CONTRL SCFTYP=RHF RUNTYP=OPTIMIZE COORD=ZMT NZVAR=0 $END
 $SYSTEM TIMLIM=2 MEMORY=100000 $END
 $STATPT OPTTOL=1.0E-5  $END
 $BASIS  GBASIS=STO NGAUSS=2 $END
 $GUESS  GUESS=HUCKEL $END
 $DATA
Methylene...1-A-1 state...RHF/STO-2G
Cnv  2

C
H  1 rCH
H  1 rCH  2 aHCH

rCH=1.09
aHCH=110.0
 $END
 



! EXAM02.
!    3-B-1 CH2    UHF calculation on methylene ground 
state.
!
!    This test uses the default choice, COORD=UNIQUE, to
!    enter the molecule.  Only the symmetry unique atoms
!    are given, and they must be given in the orientation
!    which GAMESS expects.
!
!    This job tests the UHF energy and the UHF gradient.
!    In addition, the orbitals are localized.
!
!    The initial energy is -37.228465066.
!    The FINAL energy is -37.2810867258 after 11 
iterations.
!    The unrestricted wavefunction has  = 2.013.
!    Mulliken, Lowdin charges on C are -0.020584, 0.018720.
!    The spin density at Hydrogen is -0.0167104.
!    The dipole moment is 0.016188.
!    The RMS gradient is 0.027589766.
!    FINAL localization sums are 30.57 and 25.14 Debye**2.
!
 $CONTRL SCFTYP=UHF MULT=3 RUNTYP=GRADIENT LOCAL=BOYS $END
 $SYSTEM TIMLIM=1 MEMORY=100000 $END
 $BASIS  GBASIS=STO NGAUSS=2 $END
 $GUESS  GUESS=HUCKEL $END
 $DATA
Methylene...3-B-1 state...UHF/STO-2G
Cnv  2

Carbon     6.0
Hydrogen   1.0    0.0      0.82884      0.7079
 $END
 



! EXAM03.
!    3-B-1 CH2  ROHF calculation on methylene ground state.
!    The wavefunction is a pure triplet state ( = 2),
!    and so has a higher energy than the second example.
!
!    For COORD=CART, all atoms must be given, and as in the
!    present case, these may be in an unoriented geometry.
!    GAMESS deduces which atoms are unique, and orients
!    the molecule appropriately.  The geometry here is thus
!    identical to the second example.
!
!    This job tests the ROHF wavefunction and gradient 
code.
!    It also tests the direct SCF procedure.
!
!    The initial energy is -37.228465066.
!    The FINAL energy is -37.2778767089 after 7 iterations.
!    Mulliken, Lowdin charges on C are -0.020346, 0.019470.
!    The Hydrogen atom spin density is 0.0129735.
!    The dipole moment is 0.025099 Debye.
!    The RMS gradient is 0.027505548
!
 $CONTRL SCFTYP=ROHF MULT=3 RUNTYP=GRADIENT COORD=CART $END
 $SYSTEM TIMLIM=1 MEMORY=100000 $END
 $SCF    DIRSCF=.TRUE. $END
 $BASIS  GBASIS=STO NGAUSS=2 $END
 $GUESS  GUESS=HUCKEL $END
 $DATA
Methylene...3-B-1 state...ROHF/STO-2G
Cnv  2

Hydrogen   1.0    0.82884     0.7079   0.0
Carbon     6.0
Hydrogen   1.0   -0.82884     0.7079   0.0
 $END
 



! EXAM04.
!    1-A-1 CH2    TCSCF calculation on methylene.
!    The wavefunction has two configurations, exciting
!    the carbon sigma lone pair into the out of plane p.
!
!    Note that the Z-matrix used to input the molecule
!    can include identifying integers after the element
!    symbol, and that the connectivity can then be given
!    using these labels rather than integers.
!
!    This job tests the GVB wavefunction and gradient.
!
!    The initial GVB-PP(1) energy is -37.187342653.
!    The FINAL energy is -37.2562020559 after 10 iters.
!    The GVB CI coefs are 0.977505 and -0.210911, giving
!    a pair overlap of 0.64506.
!    Mulliken, Lowdin charges for C are 0.020810, 0.055203.
!    The dipole moment is 1.249835.
!    The RMS gradient = 0.019618475.
!
 $CONTRL SCFTYP=GVB  RUNTYP=GRADIENT  COORD=ZMT  $END
 $SYSTEM TIMLIM=1 MEMORY=100000 $END
 $BASIS  GBASIS=STO NGAUSS=2 $END
 $SCF    NCO=3  NSETO=0  NPAIR=1  $END
 $DATA
Methylene...1-A-1 state...GVB...one geminal pair...STO-2G
Cnv  2

C1
H1  C1 rCH
H2  C1 rCH  H1 aHCH

rCH=1.09
aHCH=99.0
 $END
! normally a GVB-PP calculation will use GUESS=MOREAD
 $GUESS  GUESS=HUCKEL  $END
 


! EXAM05
!    CH2    CI calculation.
!    The wavefunction is RHF + CI-SD, within the minimal
!    basis, containing 55 configurations.  Two CI roots
!    are found, and the gradient of the higher state is
!    then computed.
!
!    Note that CI gradients have several restrictions,
!    which are further described in the $LAGRAN group.
!
!    FINAL energy of RHF = -38.3704885128 after 10 iters.
!    State 1 EIGENvalue = -38.4270674136, c(1)  = 0.970224
!    State 2 EIGENvalue = -38.3130036824, c(29) = 0.990865
!    The upper state dipole moment is 0.708275 Debye.
!    The upper state has RMS gradient 0.032264079
!
 $CONTRL SCFTYP=RHF CITYP=GUGA RUNTYP=GRADIENT $END
 $SYSTEM TIMLIM=3 MEMORY=300000 $END
 $BASIS  GBASIS=STO NGAUSS=3 $END
 $GUESS  GUESS=HUCKEL $END
!    look at all state symmetries, by using C1 symmetry
 $CIDRT  GROUP=C1 IEXCIT=2 NFZC=1 NDOC=3 NVAL=3 $END
!    ground state is 1-A-1, 1st excited state is 1-B-1
 $GUGDIA NSTATE=2 $END
!    compute properties of the 1-B-1 state
 $GUGDM  NFLGDM(1)=1,1 IROOT=2 $END
!    compute gradient of the 1-B-1 state
 $GUGDM2 WSTATE(1)=0.0,1.0 $END
 $DATA
Methylene...CI...STO-3G basis
Cnv   2

Carbon    6.0
Hydrogen  1.0      0.0       0.82884        0.7079
 $END
 



! EXAM06.
!    1-A-1 CH2    MCSCF methylene geometry optimization.
!    The two configuration ansatz is the same as used in
!    the fourth example.
!
!    The optimization is done in internal coordinates,
!    as NZVAR is non-zero.   Since a explicit $ZMAT is
!    given, these are used for the internal coordinates,
!    rather than those used to enter the molecule in
!    the $DATA.  (Careful examination of this trivial
!    triatomic's input shows that $ZMAT is equivalent
!    to $DATA in this case.  You would normally give
!    $ZMAT only if it is somehow different.)
!    This job tests the MCSCF wavefunction and gradient.
!    At the initial geometry:
!    The initial energy is -37.187342653,
!    the FINAL E= -37.2562020559 after 14 iterations,
!    the RMS gradient is 0.0256396.
!    After 4 steps,
!    FINAL E= -37.2581791686, RMS gradient=0.0000013,
!    r(CH)=1.1243359, ang(HCH)=98.8171674
$CONTRL SCFTYP=MCSCF RUNTYP=OPTIMIZE NZVAR=3 COORD=ZMT $END
 $SYSTEM TIMLIM=5 MEMORY=300000 $END
 $BASIS  GBASIS=STO NGAUSS=2 $END
 $DATA
Methylene...1-A-1 state...MCSCF/STO-2G
Cnv  2

C
H 1 rCH
H 1 rCH 2 aHOH

rCH=1.09
aHOH=99.0
 $END
 $ZMAT   IZMAT(1)=1,1,2,   1,1,3,   2,2,1,3  $END
! Normally one starts a MCSCF run with converged SCF
! orbitals, as Huckel orbitals normally do not converge.
! Even if they do converge, the extra iterations are
! very expensive, so use MOREAD for your runs!
!
 $GUESS  GUESS=HUCKEL $END
!
! two active electrons in two active orbitals.
! must find at least two roots since ground state is 3-B-1
!
 $DET    NCORE=3 NACT=2 NELS=2 NSTATE=2 $END
 

! EXAM07.
!    1-A' HPO    RHF calculation using GAMESS.
!    This job tests the HONDO integral & gradient packages,
!    due to the d function on phosphorus.  The input also
!    illustrates the use of a more flexible basis set than
!    the methylene examples.
!    Although HUCKEL would be better, HCORE is tested.
!
!    The initial energy is -397.591192627,
!    the FINAL E= -414.0945320854 after 18 iterations,
!    The dipole moment is 2.535169.
!    The RMS gradient is 0.023723942.
!
 $CONTRL SCFTYP=RHF RUNTYP=GRADIENT $END
 $SYSTEM TIMLIM=20 MEMORY=300000 $END
 $GUESS  GUESS=HCORE $END
 $DATA
HP=O ... 3-21G+* RHF calculation at STO-2G* geometry
Cs
 
Phosphorus 15.0
    N21 3
    L    1
    1    0.039             1.0              1.0
    D    1
    1     0.55         1.0
 
Oxygen    8.0       1.439
    N21  3
 
Hydrogen  1.0      -0.3527854           1.36412
    N21 3
 
 $END
 



! EXAM08.
!    1-A-1 H2O    RHF + MP2 gradient calculation.
!    This job generates RHF orbitals which should be saved
!    for use with EXAM9.  This run, together with EXAM9,
!    shows a much more typical MCSCF calculation, which
!    should always be started with some sort of SCF MOs.
!    This job also tests the 2nd order Moller-Plesset code.
!
!    The FINAL E is -75.5854099058 after 10 iterations.
!    E(MP2) is -75.7060361996, RMS grad=0.017449524
!    dipole moments are SCF=2.435689, MP2=2.329368
!
 $CONTRL SCFTYP=RHF MPLEVL=2 RUNTYP=GRADIENT $END
 $SYSTEM TIMLIM=2 MEMORY=100000 memddi=1 parall=.true. $END
 $BASIS  GBASIS=N21 NGAUSS=3 $END
 $GUESS  GUESS=HUCKEL $END
 $DATA
Water...RHF/3-
21G...exp.geom...R(OH)=0.95781,A(HOH)=104.4776
Cnv      2

OXYGEN     8.0
HYDROGEN   1.0   0.0     0.7572157    0.5865358
 $END
 


EXAM09.
!    1-A-1 H2O    2nd order MC-QDPT calculation
!    This job finds the Full Optimized Reaction Space
!    MCSCF (or CAS-SCF) wavefunction for water.  Its
!    initial RHF orbitals are taken from EXAM08.
!    The MCSCF wavefunction contains 225 determinants,
!    which includes 105 singlet configurations.
!    The second order perturbation theory correction
!    to the MCSCF energy is then obtained, using a
!    determinant code as well.
!
!    MCSCF:
!    On the 1st iteration, the energy is -75.601726236.
!    The FINAL MCSCF E= -75.6386218843 after 13 iters,
!    with c(1) = 0.9884456 and dipole moment = 2.301626
!    MRMP (single state MCQDPT):
!    E(MP2)= -75.7109706213
!
 $CONTRL SCFTYP=MCSCF MPLEVL=2 $END
 $SYSTEM TIMLIM=1 $END
 $BASIS  GBASIS=N21 NGAUSS=3 $END
---- EXPERIMENTAL GEOM, R(OH)=0.95781A, HOH=104.4776 DEG.
 $DATA
WATER...3-21G BASIS...FORS-MCSCF...EXPERIMENTAL GEOMETRY
Cnv 2

Oxygen     8.0
Hydrogen   1.0   0.0   0.7572157   0.5865358
 $END
 $GUESS  GUESS=MOREAD  NORB=13 $END
 $DET    NCORE=1 NACT=6 NELS=8 $END

---- CONVERGED 3-21G WATER VECTORS, E=-75.585409913 - - -
 $VEC
 1  1 0.98323195E+00 0.95883436E-01 0.00000000E+00 ...
 ... vectors deleted to save paper ...
13  3 0.35961579E+00 0.28728587E+00 0.35961579E+00
 $END
 


! EXAM 10.
!   This run duplicates the first column of table 6 in
!   Y.Yamaguchi, M.Frisch, J.Gaw, H.F.Schaefer, and
!   J.S.Binkley   J.Chem. Phys. 1986, 84, 2262-2278.
!
!   FINAL energy at the VIB 0 geometry is -74.9659012159.
!
!   If run with METHOD=ANALYTIC,
!   the FREQuencies are 2170.05, 4140.00, and 4391.07
!   the INTENSities are 0.17129, 1.04807, and 0.70930
!   the mean POLARIZABILITY is 0.40079
!
!   If run with METHOD=NUMERIC, NVIB=2,
!   the FREQuencies are 2170.14, 4140.18, and 4391.12
!   the INTENSities are 0.17169, 1.04703, and 0.70909
!
 $CONTRL SCFTYP=RHF RUNTYP=HESSIAN UNITS=BOHR NZVAR=3 $END
 $SYSTEM TIMLIM=4 MEMORY=100000 $END
 $FORCE  METHOD=ANALYTIC   $END
 $CPHF   POLAR=.TRUE. $END
 $BASIS  GBASIS=STO NGAUSS=3 $END
 $DATA
Water at the RHF/STO-3G equilibrium geometry
CNV      2

OXYGEN       8.   0.0   0.0            0.0702816679
HYDROGEN     1.   0.0   1.4325665478  -1.1312080153
 $END
 $ZMAT   IZMAT(1)=1,1,2,   1,1,3,   2,2,1,3  $END
 $GUESS  GUESS=HUCKEL   $END
 



! EXAM 11.
!   1A' HCN       RHF Intrinsic Reaction Coordinate
!   This job tests the reaction path finder.  The reaction
!   is followed back to the HNC isomer.  Four points on the
!   IRC (counting the saddle point) are found,
!  Pt.   R(N-C)   R(N-H)   A(HNC)     Energy   distance
!  T.S.  1.22136  1.43764  52.993  -91.5648510  0.0
!   1    1.22533  1.33296  58.476  -91.5673097  0.29994
!   2    1.22802  1.23827  64.747  -91.5735346  0.59986
!   3    1.22974  1.16350  72.039  -91.5814775  0.89968
!
 $CONTRL SCFTYP=RHF RUNTYP=IRC NZVAR=3 $END
 $SYSTEM TIMLIM=5 MEMORY=400000 $END
 $IRC    PACE=GS2 SADDLE=.TRUE. TSENGY=.TRUE. 
         FORWRD=.FALSE. NPOINT=3 $END
 $GUESS  GUESS=HUCKEL $END
 $ZMAT   IZMAT(1)=1,1,2  1,1,3  2,2,1,3 $END
 $BASIS  GBASIS=STO NGAUSS=3 $END
 $DATA
HYDROGEN CYANIDE...STO-3G...INTRINSIC REACTION COORDINATE
CS

NITROGEN    7.0   -.0004620071    .0002821165    
.0000000000
CARBON      6.0   1.2208931990   -.0003427488    
.0000000000
HYDROGEN    1.0    .8654562191   1.1478852258    
.0000000000
 $END
 $HESS
ENERGY IS      -91.5648510307 E(NUC) IS       23.4154954113
 1  1 1.10665682E+00 1.58946320E-02 0.00000000E+00...
... 2nd derivatives deleted to save paper ...
 9  2-8.04548379E-09 0.00000000E+00 0.00000000E+00-
1.42096449E-08
 $END
 



! EXAM 12.
!   This job illustrates linear bends, for acetylene, and
!   tests the closed shell LDA density functional program.
!
!   At the input geometry,
!   the FINAL E= -76.5352218424 after 12 iterations,
!   and the RMS gradient is 0.0944646.
!
!   At the final geometry, 5 steps later,
!   the FINAL E= -76.5841366158, RMS gradient=0.0000007,
!   R(CC)=1.2119150 and R(CH)=1.0779838.
!
 $CONTRL SCFTYP=RHF RUNTYP=OPTIMIZE NZVAR=5 $END
 $SYSTEM TIMLIM=20 MEMORY=500000 $END
 $DFT    DFTTYP=SVWN $END
 $BASIS  GBASIS=N31 NGAUSS=6 NDFUNC=1 $END
 $GUESS  GUESS=HUCKEL $END
 $STATPT OPTTOL=0.00001 $END
 $DATA
Acetylene geometry optimization in internal coordinates
Dnh      4

CARBON      6.0    0.0  0.0  0.70
HYDROGEN    1.0    0.0  0.0  1.78
 $END
 $ZMAT  IZMAT(1)=1,1,2,   1,1,3,   1,2,4,
                 5,1,2,4,    5,2,1,3  $END
------- XZ is 1st plane for both bends -------
 $LIBE  APTS(1)=1.0,0.0,0.0,1.0,0.0,0.0 $END





! EXAM 13.
!  This run duplicates the POLYATOM calculation of
!  D.Neumann + J.W.Moskowitz, J.Chem.Phys. 49,2056(1968)
!  SCF convergence is a bit better today, so some of the
!  results are not precisely the same.
!
!    V(NE) = -199.1343264099
!    V(EE) =   37.8955167210   T     =   75.9557584991
!    V(NN) =    9.2390200836   E(TOT)=  -76.0440311061
!  Mulliken charge(O)=-0.647397   Bond Order=0.905
!  Density:  O=286.491824    H=0.404989
!  Moments:  DZ= 2.093290
!    QXX=-2.388658   QYY= 2.495388   QZZ=-0.106730
!   OXXZ=-0.890362  OYYZ= 2.186853  OZZZ=-1.296490
!  Electric field/gradient:   H(YZ)=+/-0.365168
!   O(Z)=-0.060033  H(Y)=+/-0.006572  H(Z)=0.001233
!   O(XX)=1.904867  O(YY)=-1.735891   O(ZZ)=-0.168977
!   H(XX)=0.301208  H(YY)=-0.258153  H(ZZ)=-0.043055
!  Potential:  V(O)=-22.330374    V(H)=-1.006648
!
 $CONTRL SCFTYP=RHF RUNTYP=ENERGY UNITS=BOHR ISPHER=1 $END
 $SYSTEM TIMLIM=15 MEMORY=300000 $END
 $GUESS  GUESS=HUCKEL $END
 $ELMOM  IEMOM=3 $END
 $ELFLDG IEFLD=2 $END
 $ELPOT  IEPOT=1 $END
 $ELDENS IEDEN=1 $END
 $DATA
Water...properties test...(10,5,2/4,1)/[5,3,2/2,1] basis
Cnv      2
 
Oxygen     8.0
  S    2
    1   31.3166          0.243991
    2   76.232           0.152763
  S    3
    1  290.785           0.904785
    2 1424.0643          0.121603
    3 4643.4485          0.029225
  S    2
    1    4.6037          0.264438
    2   12.8607          0.458240
  S    2
    1    0.9311          1.051534
    2    9.7044         -0.140314
  S    1
    1    0.2825          1.0
  P    3
    1    7.90403         0.124190
    2   35.1832          0.019580
    3    2.30512         0.394730
  P    1
    1    0.21373         1.0
  P    1
    1    0.71706         1.0
  D    1
    1    1.5             1.0
  D    1
    1    0.5             1.0
 
Hydrogen   1.0      0.0  1.428036   1.0957706
  S    3
    1   0.65341          0.817238
    2   2.89915          0.231208
    3  19.2406           0.032828
  S    1
    1   0.17758          1.0
  P    1
    1   1.0              1.0
 
 $END




! EXAM 14.
!  CI transition moments.  Water, using RHF/STO-3G MOs.
!  All orbitals are occupied, transition is 1-1A1 to 2-1A1.
!
!  E(STATE 1)= -75.0101113548, E(STATE 2)= -74.3945819375
!  Dipole LENGTH is =0.392614
!  Dipole VELOCITY is =0.368205
!
 $CONTRL SCFTYP=NONE CITYP=GUGA RUNTYP=TRANSITN UNITS=BOHR 
$END
 $SYSTEM TIMLIM=1 MEMORY=100000 $END
 $BASIS  GBASIS=STO  NGAUSS=3 $END
!            standard SD-CI calculation
 $DRT1   GROUP=C2V IEXCIT=2 NFZC=1 NDOC=4 NVAL=2 $END
 $TRANST NFZC=1 IROOTS(1)=2 $END
 $DATA
WATER MOLECULE...STO-3G...TRANSITION MOMENT
CNV      2

OXYGEN      8.0   0.0   0.0      0.0
HYDROGEN    1.0   0.0   1.428   -1.096
 $END

--- RHF ORBITALS --- GENERATED AT 09:24:04    18-FEB-88
WATER MOLECULE...STO-3G...TRANSITION MOMENT
E(RHF)=  -74.9620539825, E(NUC)=    9.2384802989,    8 
ITERS
 $VEC1
 1  1 9.94117078E-01 2.66680164E-02 0.00000000E+00 ...
... vectors deleted to save paper ...
 7  2-8.42653177E-01 8.42653177E-01
 $END
 



! EXAM 15.
!    C2- diatom, in the electronic state doublet-pi-u.
!    This illustrates a open shell SCF calculation, using
!    fed in coupling coefficients, and the GVB/ROHF code.
!
!    The FINAL energy is -75.5579181071 after 8 iterations.
!
 $CONTRL SCFTYP=GVB  MULT=2  ICHARG=-1  UNITS=BOHR  $END
 $SYSTEM TIMLIM=15 MEMORY=300000 $END
 $BASIS  GBASIS=DH NDFUNC=1 POLAR=DUNNING $END
 $DATA
C2-...DOUBLET-PI-UNGERADE...OPEN SHELL SCF
DNH      4
 
CARBON      6.0     0.0  0.0  -1.233
 $END
 $GUESS  GUESS=MOREAD NORB=30
         NORDER=1  IORDER(5)=7,5,6  $END
 $SCF    NCO=5  NSETO=1  NO=2  COUPLE=.TRUE.
           F(1)=1.0, 0.75
       ALPHA(1)=2.0, 1.5, 1.00
        BETA(1)=-1., -.75, -0.5    $END
 
--- RHF ORBITALS --- GENERATED AT 14:05:16THU MAR 24/88
 CC  R(C-C) = 2 * 1.233 BOHR   BAS=831+1D
E(RHF)=  -75.3856001855, E(NUC)=   14.5985401460,   18 
ITERS
 $VEC
 1  1-7.06500288E-01-1.39103044E-03-3.57452331E-04 ...
... vectors deleted to save paper ...
 $END
 



! EXAM 16.
!  ROHF/GVB on Si 3-P state, using Gordon's 6-31G basis.
!
!  The purpose of this example is two-fold, namely to
!  show off the open shell capabilities of the GVB code,
!  and to emphasize that the 6-31G basis for Si in GAMESS
!  is Mark Gordon's version.  The basis stored in GAMESS is
!  completely optimized, whereas Pople's uses the core from
!  from a 6-21G set, reoptimizing only the -31G part.
!  The energy from Pople's basis would be only -288.828405.
!
!  Jacobi diagonalization is intrinsically slow, but
!  results in pure subspecies in degenerate p irreps.
!  In fact, these may be labeled in the highest Abelian
!  subgroup of the atomic point group Kh.
!
!  The FINAL energy is -288.8285729745 after 7 iterations.
!
 $CONTRL SCFTYP=GVB MULT=3 $END
 $SYSTEM TIMLIM=2 MEMORY=100000 KDIAG=3 $END
 $BASIS  GBASIS=N31 NGAUSS=6 $END
 $DATA
Si...3-P term...ROHF in full Kh symmetry
Dnh 2

Silicon     14.
 $END
 $GUESS  GUESS=HUCKEL $END
 $SCF    NCO=6  NSETO=1  NO=3   COUPLE=.TRUE.
         F(1)=1.0, 0.333333333333333
         ALPHA(1)=2.0,  0.66666666666667,  0.16666666666667
         BETA(1)=-1.0, -0.33333333333333, -0.16666666666667
 $END
 



! EXAM 17.
!  Analytic hessian for an open shell SCF function.
!  Methylene's 1-B-1 excited state.
!  FINAL energy=  -38.3334724780 after 8 iterations.
!  The FREQuencies are 1224.19, 3563.44, 3896.23
!  The INTENSities are 0.13317, 0.21652, 0.14589
!  The mean POLARIZABILITY is 0.53018
!
 $CONTRL SCFTYP=GVB  MULT=1  RUNTYP=HESSIAN  UNITS=BOHR 
$END
 $SYSTEM TIMLIM=4 MEMORY=100000 $END
 $CPHF   POLAR=.TRUE. $END
 $BASIS  GBASIS=STO NGAUSS=3 $END
 $SCF    NCO=3  NSETO=2  NO(1)=1,1  NPAIR=0 $END
 $ZMAT   IZMAT(1)=1,1,2,   1,1,3,   2,2,1,3   $END
 $GUESS  GUESS=HUCKEL  $END
 $DATA
METHYLENE...1-B-1 STATE...ROHF...STO-3G BASIS
CNV      2

CARBON      6.0    0.0   0.0            0.0041647278
HYDROGEN    1.0    0.0   1.8913952563   0.7563907037
 $END
 



! EXAM 18.
!  effective core potential...diatomic P2...RHF/CEP-31G*
!  See Stevens,Basch,Krauss, J.Chem.Phys. 81,6026-33(1984).
!  GAMESS FINAL E= -12.6956518702, FREQ=913.17
!  A separate run gives E(P)= -6.32635 so De=26.95 kcal/mol
!
 $CONTRL SCFTYP=RHF RUNTYP=HESSIAN ECP=SBKJC NZVAR=1 $END
 $SYSTEM TIMLIM=15 MEMORY=900000 $END
 $GUESS  GUESS=HUCKEL $END
 $ZMAT   IZMAT(1)=1,1,2 $END
 $DATA
diatomic phosphorous
Dnh 4
 
PHOSPHORUS 15.0   0.0000000000   0.0000000000   
0.9393077548
   SBKJC
   D 1
     1 0.45 1.0
 
 $END
 



! EXAM 19.
! Spin-orbit coupling example.
! This run duplicates the results shown in Table 3 of
! T.R.Furlani, H.F.King, J.Chem.Phys. 82, 5577-83(1985),
! GAMESS 1e-= 114.3851, 2e-= -49.4168, lit=114.38,-49.42
!
! Energies for the singlet CI are
!   State=   1 Energy =   -54.868531216 (1-delta)
!   State=   2 Energy =   -54.868531216 (1-delta)
!   State=   3 Energy =   -54.798836731 (1-sigma-plus)
! Energies for the triplet CI are
!   State=   1 Energy =   -54.938225701 (3-sigma-minus)
! Final energy of all 6 levels in the pi**2 configuration,
! after diagonalization of the spin-orbit Hamiltonian, are
!   BREIT RELATIVE E= -15296.570, -15296.432, -15296.432,
!   BREIT RELATIVE E= 0.0, 0.0, and +15296.570 wavenumbers.
! If run as OPERAT=HSO1, with ZEFF taken as true atomic Z,
! then inclusion of only the 1e- operator is 114.3851, and
!   ZEFF RELATIVE E= -15296.859, -15296.432, -15296.432,
!   ZEFF RELATIVE E= 0.0, 0.0, and +15296.859 wavenumbers.
!
! Why are there six levels? The singlet-delta is two roots,
! the singlet-sigma-plus is a third.  During the CI, the
! spatial triplet-sigma-minus is one CSF, with alpha/alpha
! spin, hence IROOTS=3,1.  The final spin-orbit Hamiltonian
! includes all three triplet spin states, namely adding the
! ab+ba and beta/beta triplets.  So, 2+1+3=6 levels.  You
! can work out for yourself these have the quantum number
! omega=0,0,1,2.  Only the omega=0 states can interact,
! raising the triplet's degeneracy and slightly affecting
! the singlet-sigma-plus state's position.
!
! Note that the lower multiplicity DRT1 is done in C1
! symmetry to generate both components of the delta state.
!
 $CONTRL SCFTYP=NONE MULT=3 CITYP=GUGA RUNTYP=TRANSITN
         UNITS=BOHR $END
 $SYSTEM TIMLIM=2 MEMORY=900000 $END
 $BASIS  GBASIS=N31 NGAUSS=6 $END
 $TRANST OPERAT=HSO2 NFZC=3 NOCC=5 NUMVEC=1 NUMCI=2
         IROOTS(1)=3,1 $END
 $DRT1   GROUP=C1  IEXCIT=2 NFZC=3 NDOC=1 NVAL=1 $END
 $DRT2   GROUP=C4V IEXCIT=2 NFZC=3 NALP=2 $END
 $DATA
Imidogen radical
Cnv 4

Nitrogen    7.0
Hydrogen    1.0     0.0   0.0   1.9748
 $END
--- ROHF ORBITALS --- GENERATED AT 12:04:18 29 MAR 90 ( 88)
IMIDOGEN RADICAL
E(ROHF)= -54.9382257007, E(NUC)=    3.5446627507,    8 
ITERS
 $VEC1
...orbitals omitted to save space...
 $END




! EXAM 20.
!  Optimize an orbital exponent.
!  The SBKJC basis for I consists of 5 gaussians, in a -41
!  type split.  The exponent of a diffuse L shell for 
!  iodide ion is optimized (6th exponent overall).  The
!  optimal exponent turns out to be 0.036713, with a
!  corresponding FINAL energy of -11.3010023066
!
 $CONTRL SCFTYP=RHF RUNTYP=TRUDGE ICHARG=-1 ECP=SBKJC $END
 $SYSTEM TIMLIM=30 MEMORY=300000 $END
 $TRUDGE OPTMIZ=BASIS NPAR=1 IEX(1)=6 $end
 $GUESS  GUESS=HUCKEL $END
 $DATA
I- ion
Dnh 2

Iodine 53.0
   SBKJC
   L 1
     1 0.02 1.0

 $END
 


! EXAM 21.
!   Open shell two configuration SCF analytic hessian.
!      M.Duran, Y.Yamaguchi, H.F.Schaefer III
!         J.Phys.Chem. 1988, 92, 3070-3075.
!   Least motion insertion of CH into H2, which leads to
!   a 3rd order hypersaddle point on the 2-B-1 surface.
!
!   Literature values are
!      FINAL E=-39.25104,      C1=0.801,    C2=-0.598
!      FREQ= 4805i, 1793i, 1317i, 989, 2914, 3216
!      mean POLARIZABILITY=2.05
!   GAMESS obtains
!      FINAL E=-39.2510351249, C1=0.801141, C2=-0.598476
!      FREQ= 4805.53i, 1793.00i, 1317.43i,
!      FREQ=  988.81, 2913.52, 3216.42
!    INTENS= 4.54563, 0.09731, 0.00768
!      mean POLARIZABILITY=2.04655
!
 $CONTRL SCFTYP=GVB MULT=2 RUNTYP=HESSIAN $END
 $SYSTEM TIMLIM=25 MEMORY=100000 $END
 $CPHF   POLAR=.TRUE. $END
 $GUESS  GUESS=MOREAD NORB=16 NORDER=1 IORDER(4)=6,4,5 $END
 $SCF    NCO=3 NSETO=1 NO=1 NPAIR=1 CICOEF(1)=0.7,-0.7 $END
 $DATA
Insertion of CH into H2...OS-TCSCF ansatz...DZ basis
CNV 2

CARBON   6.0   0.0000000000   0.0000000000  -0.0001357549
  S  6
    1 4232.61    0.002029
    2  634.882   0.015535
    3  146.097   0.075411
    4   42.4974  0.257121
    5   14.1892  0.596555
    6    1.9666  0.242517
  S  1
    1    5.1477  1.0
  S  1
    1    0.4962  1.0
  S  1
    1    0.1533  1.0
  P  4
    1   18.1557  0.018534
    2    3.9864  0.115442
    3    1.1429  0.386206
    4    0.3594  0.640089
  P  1
    1    0.1146  1.0

HYDROGEN  1.0   0.0000000000   0.0000000000   1.0922959062
  DH  0  1.2 1.2

HYDROGEN  1.0   0.0000000000   0.4152229538  -1.4824967459
  DH  0  1.2 1.2

 $END
--- these are 2-A1 ROHF vectors ---
--- ROHF ORBITALS --- GENERATED AT 08:23:42 27 JUN 90 (178)
INSERTION OF CH INTO H2...OS-TCSCF ANSATZ...DZ BASIS
E(ROHF)= -39.2316245004, E(NUC)= 8.0760320442, 12 ITERS
 $VEC
 1  1 6.01223299E-01 4.37813104E-01 ...
... vectors deleted to save paper ...
16  4-2.12429766E-02
 $END
 



! EXAM22.
!
!   3-A-2 H3CN   UMP2/6-31G*//UHF/6-31G*
!
!   The FINAL UHF energy= -94.0039683697 after 14 iters.
!   E(MP2)= -94.2315757668, with RMS grad=0.003359454
!   Dipoles for HF and MP2 are 2.049391 and 2.098487 D.
!
 $CONTRL SCFTYP=UHF MULT=3 RUNTYP=GRADIENT MPLEVL=2
         COORD=ZMT $END
 $SYSTEM TIMLIM=5 MWORDS=1 MEMDDI=1 PARALL=.TRUE. $END
 $BASIS  GBASIS=N31 NGAUSS=6 NDFUNC=1 NPFUNC=0 $END
 $GUESS  GUESS=HUCKEL $END
 $DATA
Methylnitrene...UHF/6-31G* structure
Cnv 3

N
C  1  rCN
H  2  rCH  1  aHCN
H  2  rCH  1  aHCN  3  120.0
H  2  rCH  1  aHCN  3 -120.0

rCN=1.4329216
rCH=1.0876477
aHCN=110.21928
 $END
 


! EXAM23.
!   semiempirical calculation, using the MOPAC/GAMESS combo
!   AM1 gets the geometry disasterously wrong!
!
!   initial geometry,         MNDO       AM1         PM3
!   FINAL HEAT OF FORMATION 105.14088   93.45997   46.89387
!   RMS gradient            0.0818157  0.1008587  0.0366232
!   final geometry (# steps),      8         11         10
!   FINAL HEAT OF FORMATION  46.45649   -1.81716   -2.79647
!   RMS gradient            0.0000246  0.0000294  0.0000015
!   r(SiH)                    1.42117    1.45813    1.52104
!   a(HSiH)                   101.962    120.000     96.280
!
!   At the final PM3 geometry, the charge on Si is -.4681,
!   and the dipole moment is 2.345322 Debye.
!
 $CONTRL SCFTYP=RHF RUNTYP=OPTIMIZE COORD=ZMT ICHARG=-1 
$END
 $SYSTEM TIMLIM=5 MEMORY=200000 $END
 $BASIS  GBASIS=PM3 $END
 $DATA
Silyl anion...comparison of semiempirical models
Cnv 3

Si
H  1  rSiH
H  1  rSiH  2 aHSiH
H  1  rSiH  2 aHSiH  3   aHSiH  -1

rSiH=1.15
aHSiH=110.0
 $END
 


! EXAM24.
!  Self-consistent reaction field test, of water in water.
!  Cavity radius is calculated from the 1.00 g/cm**3 
density.
!  FINAL energy is -74.9666740755 after 12 iterations
!  Induced dipole= -0.03663, RMS gradient= 0.033467686
!
 $contrl scftyp=rhf runtyp=gradient coord=zmt $end
 $system memory=300000 $end
 $basis  gbasis=sto ngauss=3 $end
 $guess  guess=huckel $end
 $scrf   radius=1.93 dielec=80.0 $end
 $data
water in water, arbitrary geometry
Cnv 2

O
H 1 rOH
H 1 rOH 2 aHOH 

rOH = 0.95
aHOH = 104.5
 $end
 


! EXAM25.
!   Illustration of coordinate systems for geometry 
searches.
!   Arbitrary molecule, chosen to illustrate ring, methyl 
on
!   ring, methine H10, imino in ring, methylene in ring.
!
!      H8 H9
!        \|
!      H7-C6  O1---O5   H13
!          \ /       \ /
!           C2       C4
!          /  \     /  \
!         H10    N3     H12
!                |
!                H11
!                       
!    The initial AM1 energy is -48.6594935
!                   initial RMS  final E    final RMS  
#steps
!   Cartesians       0.0200113 -48.7022520  0.0000304    50
!   dangling Z-mat   0.0600637 ... OO bond crashes on 1st 
step
!   good Z-matrix    0.0232915 -48.7022510  0.0000285    21
!   deloc. coords.   0.0176452 -48.7022537  0.0000267    22
!   nat. internals   0.0209442 -48.7022570  0.0000183    15
!
 $contrl scftyp=rhf runtyp=optimize coord=zmt $end
 $system memory=300000 $end
 $statpt hess=guess nstep=100 nprt=-1 npun=-2 $end
 $basis  gbasis=am1 $end
 $guess  guess=huckel $end
 $data
Illustration of coordinate systems
C1
O
C 1 rCOa
N 2 rCNa 1 aNCO
C 3 rCNb 2 aCNC  1 wCNCO
O 4 rCOb 3 aOCN  2 wOCNC
C 2 rCC  1 aCCO  5 wCCOO
H 6 rCH1 2 aHCC1 1 wHCCO1
H 6 rCH2 2 aHCC2 1 wHCCO2
H 6 rCH3 2 aHCC3 1 wHCCO3
H 2 rCHa 1 aHCOa 5 wHCOOa
H 3 rNH  2 aHNC  1 wHNCO
H 4 rCHb 5 aHCOb 1 wHCOOb
H 4 rCHc 5 aHCOc 1 wHCOOc

rCOa=1.43
rCNa=1.47
rCNb=1.47
rCOb=1.43
aNCO=106.0
aCNC=104.0
aOCN=106.0
wCNCO=30.0
wOCNC=-30.0
rCC=1.54
aCCO=110.0
wCCOO=-150.0
rCH1=1.09
rCH2=1.09
rCH3=1.09
aHCC1=109.0
aHCC2=109.0
aHCC3=109.0
wHCCO1=60.0
wHCCO2=-60.0
wHCCO3=180.0
rCHa=1.09
aHCOa=110.0
wHCOOa=100.0
rNH=1.01
aHNC=110.0
wHNCO=170.0
rCHb=1.09
rCHc=1.09
aHCOb=110.0
aHCOc=110.0
wHCOOb=150.0
wHCOOc=-100.0
 $end

To use Cartesian coordinates:
--- $contrl nzvar=0 $end

To use conventional Z-matrix, with a dangling O-O bond:
--- $contrl nzvar=33 $end

To use well chosen internals, with all 5 ring bonds 
defined:
--- $contrl nzvar=33 $end
--- $zmat   izmat(1)=1,1,2,  1,2,3,  1,3,4,  1,4,5,  1,5,1,
     2,1,2,3,  2,5,4,3,  3,5,1,2,3,  3,1,5,4,3,
     1,6,2,  2,6,2,1,  3,6,2,1,5,  
     1,6,7,  1,6,8,  1,6,9,  2,7,6,2,  2,8,6,2,  2,9,6,2,  
     3,7,6,2,1,  3,8,6,2,1,  3,9,6,2,1,
     1,10,2,  2,10,2,1,  3,10,2,1,5,
     1,11,3,  2,11,3,2,  3,11,3,2,1,
     1,12,4,  2,12,4,5,  3,12,4,5,1,  
     1,13,4,  2,13,4,5,  3,13,4,5,1 $end

To use delocalized coordinates:
--- $contrl nzvar=33 $end
--- $zmat   dlc=.true. auto=.true. $end

To use natural internal coordinates:
 $contrl nzvar=44 $end
 $zmat   izmat(1)=1,1,2, 1,2,3, 1,3,4, 1,4,5, 1,5,1, ! ring 
!
     2,5,1,2,   2,1,2,3,   2,2,3,4,   2,3,4,5,   2,4,5,1,
     3,5,1,2,3, 3,1,2,3,4, 3,2,3,4,5, 3,3,4,5,1, 3,4,5,1,2,
        1,2,6,  2,6,2,1,  2,6,2,3,  4,6,2,1,3,   ! methyl C 
!
     1,6,7,  1,6,8,  1,6,9,                     ! methyl Hs 
!
     2,7,6,8,  2,8,6,9,  2,9,6,7,  2,9,6,2,  2,7,6,2,
     2,8,6,2,  3,7,6,2,1,
     1,10,2,  2,10,2,1,  2,10,2,3,  2,10,2,6,   ! methine !
     1,11,3,  2,11,3,2,  2,11,3,4,  4,11,3,2,4, ! imino !
     1,12,4,  1,13,4,                     ! methylene !
     2,12,4,13,  2,12,4,3,  2,13,4,3,  2,12,4,5,  2,13,4,5

        ijS(1)=1,1,  2,2,  3,3,  4,4,  5,5,     ! ring !
          6,6, 7,6, 8,6, 9,6,10,6,
               7,7, 8,7, 9,7,10,7,
         11,8,12,8,13,8,14,8,15,8,
         11,9,12,9,     14,9,15,9,
               16,10,   17,11,18,11,   19,12,   ! methyl C 
!
         20,13,  21,14,  22,15,                ! methyl Hs 
!
         23,16, 24,16, 25,16, 26,16, 27,16, 28,16,
         23,17, 24,17, 25,17,
                24,18, 25,18,
                              26,19, 27,19, 28,19,
                                     27,20, 28,20,
         29,21,
            30,22,    31,23,32,23,33,23,   32,24,33,24,  ! 
methine !
            34,25,  35,26,36,26,  37,27,      ! imino !
         38,28,  39,29,                    ! methylene !
         40,30, 41,30, 42,30, 43,30, 44,30,
                41,31, 42,31, 43,31, 44,31,
                41,32, 42,32, 43,32, 44,32,
                41,33, 42,33, 43,33, 44,33

        Sij(1)=1.0, 1.0, 1.0, 1.0, 1.0,         ! ring !
            1.0, -0.8090, 0.3090,  0.3090, -0.8090,
                 -1.1180, 1.8090, -1.8090, 1.1180,
            0.3090, -0.8090, 1.0, -0.8090, 0.3090,
            -1.8090, 1.1180,      -1.1180, 1.8090,
                    1.0,   1.0,-1.0,   1.0, ! methyl C !
         1.0,   1.0,   1.0,                 ! methyl Hs !
         1.0, 1.0, 1.0,-1.0,-1.0,-1.0,
         2.0,-1.0,-1.0,
              1.0,-1.0,
                        2.0,-1.0,-1.0,
                             1.0,-1.0,
         1.0,
            1.0,   2.0,-1.0,-1.0,  1.0,-1.0,  ! methine !
            1.0,   1.0,-1.0,    1.0,         ! imino !
         1.0,  1.0,                      ! methylene !
         4.0, 1.0, 1.0, 1.0, 1.0,
              1.0,-1.0, 1.0,-1.0,
              1.0, 1.0,-1.0,-1.0,
              1.0,-1.0,-1.0, 1.0    $end



! EXAM26
!  Localized orbital test...Phys.Chem. 1984, 88, 382-389
!
!  FINAL Energy= -415.2660357363 in 11 iters
!
!  If you localize only the valence orbitals, by commenting
!  out the $LOCAL group below, the
!        Boys localization sum is 204.693589
!  Ruedenberg localization sum is   5.081667
!  population localization sum is   4.610528
!
!  The SCF localized charge decomposition forces all MOs
!  to be localized, so the final diagonal sum is 28.389125.
!  The nuclear charge assigned to oxygen "lone pairs" is
!  redistributed so the total nuclear P and O charges are
!  correct.  The energies for the PO bond, PH bonds,
!  and O lone pairs are -37.273022, -27.364212, -26.363865.
!  The corresponding dipoles are 2.041, 3.484, and 3.465.
!
!  To analyze MP2 valence contributions, choose MPLEVL=2,
!  and turn EDCOMP and DIPDCM off.  The results should be
!  E(MP2)=-415.4952200908, and contributions of PO bond,
!  PH bonds, and O lone pairs to the correlation energy are
!  -0.0442096, -0.0237793, and -0.0378790, respectively.
!
 $contrl scftyp=rhf runtyp=energy local=ruednbrg mplevl=0 
$end
 $system memory=750000 $end
 $mp2    lmomp2=.true. $end
 $local  edcomp=.true.  moidon=.true. dipdcm=.true.
         ijmo(1)= 1,11, 2,11, 1,12, 2,12, 1,13, 2,13
         
zij(1)=1.666666667,0.333333333,1.6666666667,0.333333333,
                1.666666667,0.333333333
         moij(1)= 2,1,  2,1,  2,1
         nnucmo(11)=2,2,2  $end
 $basis  gbasis=n21 ngauss=3 ndfunc=1 $end
 $data
phosphine oxide...3-21G* basis...localized orbital test
Cnv 3

P 15.0
O  8.0  0.0000000000  0.0   1.4701
H  1.0  1.2335928631  0.0  -0.6421021244
 $end
 


! EXAM27.
!    NH3   semi-empirical DRC calculation
!
!    The dynamic reaction coordinate is initiated at the
!    planar inversion transition state, with a velocity
!    parallel to the mode with imaginary frequency.  The
!    reactive trajectory is given one kcal/mole energy in
!    excess of the amount needed to traverse the barrier.
!    The trajectory is analyzed in terms of the equilibrium
!    geometry's coordinates and normal modes.  Because
!    this is a test run, the trajectory is stopped after
!    a much too short time interval.
!
!    The last point on the trajectory has
!    T=0.00163, V=-9.12874, E=-9.12710,
!    q(L6)=-0.153112, p(L6)=-0.014313,
!    velocity(H,z)=0.028857623667
 $CONTRL SCFTYP=RHF RUNTYP=DRC $END
 $SYSTEM MEMORY=300000 $END
 $BASIS  GBASIS=AM1 $END
 $DATA
ammonia...DRC starting from the planar transition state
C1
NITROGEN    7.0   0.0000000000   0.0000000000   
0.0000000000
HYDROGEN    1.0  -0.4882960784   0.8457536168   
0.0000000000
HYDROGEN    1.0  -0.4882960784  -0.8457536168   
0.0000000000
HYDROGEN    1.0   0.9765921567   0.0000000000   
0.0000000000
 $END
 $DRC NPRTSM=1 NSTEP=10 DELTAT=0.1 NMANAL=.TRUE. EKIN=1.0 
      VEL(1)=0.0 0.0 -0.1128,  
             0.0 0.0 0.5213, 
             0.0 0.0 0.5213,
             0.0 0.0 0.5213
      C0(1)=0.0000000000   0.0000000000   0.0291576578
           -0.4692651161   0.8127910232  -0.3097192193
           -0.4692651161  -0.8127910232  -0.3097192193
            0.9385302321   0.0000000000  -0.3097192193 $END
 $HESS
ENERGY IS       -9.1354556210 E(NUC) IS        6.8369847904
 1  1 6.16231432E-01 3.45452916E-11-1.03923982E-05 ...
... 2nd derivatives deleted to save paper ...
12  3 1.38181166E-10 5.72335505E-02
 $END



! EXAM28.  Morokuma energy decomposition.
! This run duplicates a result from Table 16 of 
! H.Umeyama, K.Morokuma, J.Am.Chem.Soc. 99,1316(1977)
!
!             GAMESS   literature
!       ES=   -14.02     -14.0
!       EX=     8.98       9.0
!       PL=    -1.12      -1.1
!       CT=    -2.37      -2.4
!      MIX=    -0.43      -0.4
!     total    -8.96      -9.0
!
 $contrl scftyp=rhf runtyp=morokuma coord=zmt $end
 $system memory=300000 timlim=5 $end
 $basis  gbasis=n31 ngauss=4 $end
 $guess  guess=huckel $end
 $morokm iatm(1)=3 $end
 $data
water-ammonia dimer
Cs

H
O 1 rOH
H 2 rOH 1 aHOH
N 2  R  1 aHOH    3    0.0
H 4 rNH 3 aHNaxis 1  180.0
H 4 rNH 3 aHNaxis 5 +120.0
H 4 rNH 3 aHNaxis 5 -120.0

rOH=0.956
aHOH=105.2
rNH=1.0124
aHNaxis=112.1451  ! makes HNH=106.67
R=2.93
 $end
 


! EXAM29.  surface scan
!  The scan is done over a 3x3 grid centered on the SCF
!  transition state for the SN2 type reaction 
!      F- + NH2OH -> F-NH2-OH anion -> FNH2 + OH-
!
!  Groups 1 and 2 are F and OH, and their distance from
!  the N is varied antisymmetrically, which is more or
!  less what the IRC should be like.  The results seem to
!  indicate that the MP2/3-21G saddle point would shift
!  further into the product channel, since the higher
!  MP2 energies occur at shorter r(NF) and longer r(NO):
!
!  FINAL E=   -229.0368324615, E(MP2)=   -229.3873302375
!  FINAL E=   -229.0356378402, E(MP2)=   -229.3866642673
!  FINAL E=   -229.0309266321, E(MP2)=   -229.3822094777
!  FINAL E=   -229.0372146702, E(MP2)=   -229.3923234074
!  FINAL E=   -229.0385440296, E(MP2)=   -229.3936486644
!  FINAL E=   -229.0367369562, E(MP2)=   -229.3913683073
!  FINAL E=   -229.0328601144, E(MP2)=   -229.3918932009
!  FINAL E=   -229.0364643934, E(MP2)=   -229.3948325500
!  FINAL E=   -229.0372478250, E(MP2)=   -229.3943498144
!
!  A more conclusive way to tell this would be to compute
!  single point MP2 energies along the SCF IRC, since the
!  true reaction path always curves, and thus does not lie
!  along rectangular grid points.
!
 $contrl scftyp=rhf runtyp=surface
         icharg=-1 coord=zmt mplevl=2 $end
 $system memory=500000 timlim=30 memddi=2 $end
 $surf   ivec1(1)=2,1 igrp1=1       
         ivec2(1)=2,5 igrp2(1)=5,6  
         disp1= 0.10 ndisp1=3 orig1=-0.10
         disp2=-0.10 ndisp2=3 orig2= 0.10 $end
 $basis  gbasis=n21 ngauss=3 $end
 $guess  guess=huckel $end
 $data
F-NH2-OH exchange (inspired by J.Phys.Chem. 1994,98,7942-4)
Cs

F
N 1 rNF
H 2 rNH   1  aFNH 
H 2 rNH   1  aFNH   3 aHNH  +1
O 2 rNO   3  aONH   4 aONH  -1
H 5 rOH   2  aHON   1 180.0

rNF=1.7125469
rNH=0.9966981
rNO=1.9359887
rOH=0.9828978
aFNH=90.18493
aONH=79.34339
aHON=100.78851
aHNH=108.57000
 $end
 

!   EXAM30
!   Test of water EFP ... formamide/three water complex
!   FINAL E= -169.0085352303 after 12 iterations
!   RMS gradient=0.008099469
!   The geometry below combines a computed gas phase
!   structure for formamide, with three waters located
!   in a cylic fashion whose positions approximate the
!   minimum structure of W.Chen and M.S.Gordon.  This
!   approximate structure lies about 11 mHartee above 
!   the actual minimum.
 $contrl scftyp=rhf runtyp=gradient coord=zmt $end
 $system memory=300000 $end
 $basis  gbasis=dh npfunc=1 ndfunc=1 $end
 $data
formamide with three effective fragment waters
C1
C
O 1 rCO
N 1 rCN  2 aNCO
H 3 rNHa 1 aCNHa 2 0.0
H 3 rNHb 1 aCNHb 2 180.0
H 1 rCH  2 aHCO  4 180.0

rCO=1.1962565
rCN=1.3534065
rNHa=0.9948420
rNHb=0.9921367
rCH=1.0918368
aNCO=124.93384
aCNHa=119.16000
aCNHb=121.22477
aHCO=122.30822
 $end
 $efrag
coord=int
fragname=H2Oef2
O1  4 1.926      3 175.0     1 180.0
H2  7 0.9438636  4 117.4     3 -175.0
H3  7 0.9438636  8 106.70327 4 95.0
fragname=H2Oef2
O1  8 1.901      7 175.0     4 0.0
H2 10 0.9438636  8 110.0     4 -5.0
H3 10 0.9438636 11 106.70327 8 -95.0
fragname=H2Oef2
H2  2 1.951      1 150.0     3 0.0
O1 13 0.9438636  2 177.0     3 0.0
H3 14 0.9438636 13 106.70327 3 140.0
 $end
 


! EXAM31.
!
!  Water in PCM water...RHF geometry optimization
!  FINAL E= -74.9673640167,11 iters, RMS GRAD =  .0327344
!  FINAL E= -74.9480609436, 8 iters, RMS GRAD =  .0658892
!  FINAL E= -74.9685681840, 7 iters, RMS GRAD =  .0245623
!  FINAL E= -74.9709296076, 7 iters, RMS GRAD =  .0086413
!  FINAL E= -74.9712066750, 8 iters, RMS GRAD =  .0007902
!  FINAL E= -74.9712091914, 6 iters, RMS GRAD =  .0002542
!  FINAL E= -74.9712098250, 6 iters, RMS GRAD =  .0007388
!  FINAL E= -74.9712093881, 5 iters, RMS GRAD =  .0000474
!  The final geometry is not symmetric,
!        O
!        H      1    .9875121
!        H      1    .9875026  2   100.0259677
!  
!          ----------------------------------------------
!          -------   RESULTS OF PCM CALCULATION   -------
!          ----------------------------------------------
!  
!  FREE ENERGY IN SOLVENT        =      -74.9712093866 A.U.
!  INTERNAL ENERGY IN SOLVENT    =      -74.9656127297 A.U.
!  DELTA INTERNAL ENERGY         =         .0000000000 A.U.
!  ELECTROSTATIC INTERACTION     =        -.0055966569 A.U.
!  PIEROTTI CAVITATION ENERGY    =         .0000000000 A.U.
!  DISPERSION FREE ENERGY        =         .0000000000 A.U.
!  REPULSION FREE ENERGY         =         .0000000000 A.U.
!  TOTAL INTERACTION             =        -.0055966569 A.U.
!  TOTAL FREE ENERGY IN SOLVENT  =      -74.9712093866 A.U.
!  --------------------------------------------------------
-----
!  If run as water in COSMO water...RHF geometry 
optimization
!  TOTAL ENERGY = -74.9668641013, GRADIENT = 0.0328762
!  TOTAL ENERGY = -74.9473469405, GRADIENT = 0.0661387
!  TOTAL ENERGY = -74.9680516495, GRADIENT = 0.0246706
!  TOTAL ENERGY = -74.9704460745, GRADIENT = 0.0087527
!  TOTAL ENERGY = -74.9707087625, GRADIENT = 0.0007898
!  TOTAL ENERGY = -74.9707113433, GRADIENT = 0.0000221
!
 $contrl scftyp=rhf runtyp=optimize coord=zmt $end
 $system memory=300000 $end
!     new PCM won't get gradient closer to zero...
 $statpt opttol=2d-4 $end
 $basis  gbasis=sto ngauss=3 $end
 $guess  guess=huckel $end
 $pcm    solvnt=water $end
--- $cosgms epsi=80.0 $end
 $data
a water molecule solvated by water
Cnv 2

O
H 1 rOH
H 1 rOH 2 aHOH 

rOH=0.95
aHOH=104.5
 $end
 


! EXAM32.
!  Test of Coupled-Cluster energy for HNO
!  The basis set used is 6-31G(d,p), with 35 AOs.
!  The two chemical core orbitals are not correlated.
!
!  RHF FINAL E= -129.7891059393 after 13 iters
!  Highest level result is E(CR-CCSD(T))= -130.1486914386
!
!  Other results are
!  19 CCSD iterations needed to converge T1 and T2.
!  E(MBPT(2)) = -130.1278985212, aka MP2 energy
!  E(CCSD)    = -130.1398314376
!  E(CCSD(T)) = -130.1508271127
!  The T1 diagnostic is 0.01448788, and the largest T2
!  amplitude is for the pi->pi* double, namely -0.146352.
!  The R-CCSD(T) denominator is 1.126.
!
 $contrl scftyp=rhf cctyp=cr-cc runtyp=energy nzvar=3 $end
 $system mwords=2 $end
 $guess  guess=huckel $end
 $basis  gbasis=n31 ngauss=6 ndfunc=1 npfunc=1 $end
 $zmat   izmat(1)=1,1,2,  1,2,3,  2,1,2,3  $end
 $data
HNO...CR-CCSD(T) computation in small DZP basis
Cs

H 1.0  -0.3153213523   0.9784305023   0.0
N 7.0   0.0188021294   0.0012704060   0.0
O 8.0   1.1940439356   0.0007180427   0.0
 $end
 


! EXAM 33.
!   This job illustrates occupation restricted multiple 
!   active space MCSCF, for HCN.
!
!   The multiple active spaces are sigma, pi-x, and pi-y.
!   The excitation level between these three spaces can be
!   limited to 0, 1, or 2.  The number of determinants in
!   each such ORMAS-MCSCF are
!    excitation  MINE    MAXE   # dets    energy   gradient
!        0      6,2,2   6,2,2    2,610  -93.014905  0.04395
!        1      5,1,1   7,3,3   11,290  -93.014905  0.04395
!        2      4,0,0   8,4,4   15,410  -93.022394  0.04509
!     full CI   2,0,0  10,4,4   15,876  -93.022407  0.04510
!   Full CI of 10 valence electrons in 9 valence orbitals
!   is well within the capabilities of CISTEP=ALDET, but
!   this example is meant to illustrate using occupational
!   restrictions to limit the number of determinants.
!   Note the singles between spaces don't contribute any
!   energy because in this case the singles determinants
!   all have the wrong total space symmetry.
!   FINAL E= -93.0223942007, 11 iters, RMS grad=0.045100021
 $contrl scftyp=mcscf runtyp=gradient nzvar=3 $end
 $system mwords=5 memddi=1 $end
 $basis  gbasis=n31 ngauss=6 ndfunc=1 npfunc=1 $end
 $zmat   izmat(1)=1,1,2,  1,2,3,  5,1,2,3 $end
 $libe   apts(1)=1.0,0.0,0.0 $end
!  reordering is sigma before pi-x before pi-y before empty
 $guess  guess=moread norb=35 norder=1
         iorder(3)=3,4,5,10,14,  6,9,  7,8,  11,12,13 $end
 $mcscf  soscf=.true. cistep=ormas $end
 $det    ncore=2 nact=9 nels=10 $end
 $ormas  nspace=3 mstart(1)=3,8,10  mine(1)=4,0,0
                                    maxe(1)=8,4,4 $end
 $data
HCN...6-31G(d,p) MCSCF using ORMAS...RHF geometry
Cnv 4

H  1.0  0.0 0.0 -1.0589956
C  6.0  0.0 0.0  0.0
N  7.0  0.0 0.0  1.1327718
 $end

--- CLOSED SHELL MO's --- GENERATED Mon, Jan 13, 2003
E(RHF)= -92.8771381048, with MVOQ=4 used to make virtuals.
 $VEC
...orbitals deleted...
 $END
 


! EXAM34.
!   CIS treatment of excited states of formaldehyde.
!
!   EXCITED STATE 1's E=-113.7017742428, RMS=0.0290048
!   The S0->S1 transition dipole is (0,0,0.006029),
!   and the S0 -> S1 transition energy is 4.56 eV.
!
!   geometry optimization would lead in 18 steps to
!   -113.7053624528, at r(CO)=1.2553, r(CH)=1.0854,
!   a(HCO)= 117.74, with C's pyramidalization= 24.88.
!   This reproduces the fourth line of Table III in
!   Foresman et al. J.Phys.Chem. 96, 135-149(1992),
!   using no frozen core orbitals in order to do so.
!   Since it is well known that the geometry of this
!   state lies within Cs symmetry, the initial guess
!   geometry below is very slightly bent into Cs.
!
 $contrl scftyp=rhf cityp=cis runtyp=gradient nzvar=6 $end
 $system timlim=1 $end
 $basis  gbasis=n31 ngauss=6 ndfunc=1 diffsp=.t. $end
 $guess  guess=huckel $end
 $cis    hamtyp=saps mult=1 nacore=0 nstate=1 istate=1 $end
 $zmat   izmat(1)=1,1,2,  1,2,3,  1,2,4, 
                  2,1,2,3,  2,1,2,4,  4,1,2,4,3 $end
 $data
Formaldehyde CIS/6-31+G(d) 1(n->pi*) state optimization
Cs

O   8.0    .01  -.8669736159  .0
C   6.0    .0    .3455497481  .0
H   1.0  -0.01   .9295804473  .9376713430
 $end



! EXAM35.
!   As atom...Test of relativistic energy correction,
!   by the Douglas-Kroll transformation to 3rd order.
!
!   the FINAL DK3 energy is -2259.0955118230
!   web page says           -2259.095511826
!
!   convergence of the DK transformation is typical,
!      0th order -2234.2372862734 (non-relativistic)
!      1st order -2264.6131852344
!      2nd order -2258.9450216276
!      3rd order -2259.0955118230
!   in that 1st order way undershoots, 2nd order comes
!   back close, and 3rd order is not insubstantial.
!   Compare with -2259.456841 which is the point
!   nucleus Dirac-Coulomb numerical Hartree-Fock from
!   L.Visscher, K.G.Dyall
!   At.Data Nucl.Data Tables 67, 207-224(1997)
!
!   The uncontracted 20s15p9d basis set below is from 
!       T.Tsuchiya, M.Abe, T.Nakajima, K.Hirao
!          J.Chem.Phys. 115, 4463-4472(2001)
!   using exponents downloaded from the web page of
!   this group at the University of Tokyo.  A general
!   contraction of this basis can easily be obtained,
!   by manipulating the $VEC coefs produced by this run.
!   The semicolon divides two lines of input that happen
!   to be given on a single physical line of the file.
!
 $contrl scftyp=rohf mult=4 relwfn=dk ispher=1 $end
 $system mwords=2 $end
 $relwfn norder=3 $end
 $guess  guess=huckel $end
 $data
illustration of 3rd order Douglas-Kroll for As
Dnh 2

Arsenic 33.0
   S 1 ; 1 7.2421890D+07 1.0
   S 1 ; 1 7.7040750D+06 1.0
   S 1 ; 1 1.3365730D+06 1.0
   S 1 ; 1 3.0394350D+05 1.0
   S 1 ; 1 8.3289250D+04 1.0
   S 1 ; 1 2.5994450D+04 1.0
   S 1 ; 1 8.9795770D+03 1.0
   S 1 ; 1 3.3667950D+03 1.0
   S 1 ; 1 1.3464700D+03 1.0
   S 1 ; 1 5.6774580D+02 1.0
   S 1 ; 1 2.4923080D+02 1.0
   S 1 ; 1 1.1199520D+02 1.0
   S 1 ; 1 4.6328140D+01 1.0
   S 1 ; 1 2.2611220D+01 1.0
   S 1 ; 1 1.0910110D+01 1.0
   S 1 ; 1 4.5498340D+00 1.0
   S 1 ; 1 2.1494630D+00 1.0
   S 1 ; 1 1.0337510D+00 1.0
   S 1 ; 1 3.0892460D-01 1.0
   S 1 ; 1 1.1206710D-01 1.0
   P 1 ; 1 4.9515580D+04 1.0
   P 1 ; 1 8.4637830D+03 1.0
   P 1 ; 1 2.2908560D+03 1.0
   P 1 ; 1 7.7965970D+02 1.0
   P 1 ; 1 3.0545690D+02 1.0
   P 1 ; 1 1.3097990D+02 1.0
   P 1 ; 1 5.9698960D+01 1.0
   P 1 ; 1 2.8408790D+01 1.0
   P 1 ; 1 1.3883000D+01 1.0
   P 1 ; 1 6.6102210D+00 1.0
   P 1 ; 1 3.0821260D+00 1.0
   P 1 ; 1 1.3919830D+00 1.0
   P 1 ; 1 4.8254700D-01 1.0
   P 1 ; 1 1.9228260D-01 1.0
   P 1 ; 1 7.2849660D-02 1.0
   D 1 ; 1 7.1896480D+02 1.0
   D 1 ; 1 2.0798400D+02 1.0
   D 1 ; 1 7.9590850D+01 1.0
   D 1 ; 1 3.4514110D+01 1.0
   D 1 ; 1 1.5730540D+01 1.0
   D 1 ; 1 7.2805600D+00 1.0
   D 1 ; 1 3.3000700D+00 1.0
   D 1 ; 1 1.4173160D+00 1.0
   D 1 ; 1 5.4472730D-01 1.0
 
 $end


! EXAM36
!   analytic hessian for determinant MCSCF, at the
!   transition state for C=C rotation in ethylene
!
!   There are 38 AOs and 36 MOs using spherical harmonics.
!   The 4e-, 4 orbital active space (CC sigma, pi, pi*, and
!   sigma* orbitals) generates a total of 36 determinants.
!   
!   FINAL E= -77.9753563834 after 14 iterations
!   imaginary FREQ= 1847.32i
!   true FREQ= 319.87(2), 1005.72(2), 1082.80, 1578.13
!   true FREQ= 1605.72, 3311.13, 3315.17, 3405.91(2)
!   the lowest true vibration is the most intense, 1.09748
!   
 $contrl scftyp=mcscf runtyp=hessian ispher=1 $end
 $system mwords=1 memddi=5 timlim=50 $end
 $basis  gbasis=n31 ngauss=6 ndfunc=1 $end
 $guess  guess=moread norb=36 norder=1
         iorder(3)=4,5,6,7,  3,8,9,10 $end
 $det    ncore=6 nact=4 nels=4 $end
 $data   
C2H4 at rotational saddle point...sigma,pi,pi*,sigma* 
active
Dnd 2

C     6.0   0.0000000000   0.0000000000   0.7486926908
H     1.0   0.6500976762   0.6500976762   1.3062796706
 $end

How to prepare the starting orbitals, also take note
of the orbital reordering to select the CC sigma:

--- $contrl scftyp=rohf mult=3 runtyp=energy $end
--- $scf    mvoq=2 $end
--- $guess  guess=huckel norder=0 $end

--- OPEN SHELL ORBITALS --- Tue Apr  6 10:00:30 2004
E(ROHF)=      -77.9570103652
 $VEC
 1  1 7.04639833E-01...
...
36  8 3.55118554E-02-8.89989950E-03-3.55118554E-02
 $END


!    water trimer...illustration of FMO method on clusters
!
!    A total of 21 energies are computed in this run,
!    of which the very first and last are -75.0201194583
!    and -149.9943977172, from various monomer and dimer
!    calculations.  Combined together, the results for
!    2-body FMO-RHF are:
!    Euncorr(2)= -224.910612407, RMS GRADIENT = 0.0264848
!
!    Explicit RHF/STO-3G calculation on these coords has
!             E= -224.9112662623,          grad=0.0269349
!
!    See ../gamess/tools/fmo for larger examples based on
!    published data and examples involving bond 
fractioning.
!
 $contrl scftyp=rhf runtyp=gradient $end
 $system timlim=2 $end
 $basis  gbasis=sto ngauss=3 $end
 $fmo    nfrag=3 icharg(1)=0,0,0
         frgnam(1)=frag01,frag02,frag03
         indat(1)=1,1,1,
                  2,2,2,
                  3,3,3
 $end
 $fmoprp nprint=0 $end
 $fmoxyz
O  O        .000000     .000000     .000000
H  H        .000000     .000000     .957200
H  H        .926627     .000000    -.239987
O  O       2.542027     .893763   -1.001593
H  H       1.991815    1.623962   -1.284979
H  H       2.958433     .581215   -1.804806
O  O        .162059    2.462918   -1.477183
H  H       -.189749    1.755643    -.936605
H  H       -.375542    2.449889   -2.269046
 $end
 $data
Basis set input, with no atomic coordinates
C1
h-1 1
c-1 6
n-1 7
o-1 8
 $end
 

Last Modified:June 08, 2007 10:31:49.   Copyright © 1997-2012 The Mississippi Center for Supercomputing Research. All Rights Reserved.   The University of Mississippi
Valid RSS